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Abstract

This paper extends the previous work in smooth support vector machine
(SSVM) from binary to k-class classification based on a single machine ap-
proach and call it multi-class smooth SVM (MSSVM). This study implements
MSSVM for a ternary classification problem and labels it as TSSVM. For the
case k > 3, this study proposes a one-vs.-one-vs.-rest (OOR) scheme that
decomposes the problem into k(k — 1)/2 ternary classification subproblems
based on the assumption of ternary voting games. Thus, the k-class classifi-
cation problem can be solved via a series of TSSVMSs. The numerical exper-
iments in this study compare the classification accuracy for TSSVM/OOR,
one-vs.-one, one-vs.-rest schemes on nine UCI datasets. Results show that
TSSVM/OOR outperforms the one-vs.-one and one-vs.-rest for all datasets.
This study includes further error analyses to emphasize that the prediction
confidence of OOR is significantly higher than the one-vs.-one scheme. Due to
the nature of OOR design, it can detect the hidden (unknown) class directly.
This study includes a “leave-one-class-out” experiment on the pendigits
dataset to demonstrate the detection ability of the proposed OOR method
for hidden classes. Results show that OOR performs significantly better than
one-vs.-one and one-vs.-rest in the hidden class detection rate.
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1. Introduction

Support Vector Machines (SVMs) [5, 8, 11] have recently become promis-
ing learning algorithms for binary classification. How to effectively extend
binary SVMs to solve multi-class classification problems remains a topic of
research. There are two most popular approaches to deal with k-class clas-
sification problems. One is the single machine approach, which generates
a sophisticated classifier by solving a huge and complex optimization prob-
lem [4, 10, 23, 33, 34]. The other is the multiple-machine approach, which
separates a multi-class classification problem into a series of smaller binary
classification tasks [1, 3, 10, 12, 15, 16, 19, 20, 21, 22, 30].

Previous studies discuss and compare these two variant multi-class SVM
(17, 31]. Comparison results suggest that two simple and well-known multiple-
machine approaches, the one-vs.-rest scheme [3] and the one-vs.-one scheme
[15, 21, 22], should be used because of their clarification, good accuracy re-
ports, and decreased computation cost.

This paper investigates the one-vs.-rest scheme and the one-vs.-one scheme
and addresses some concerns on them. The one-vs.-rest scheme builds up &
binary subclassifiers, training the ith subclassifier f; from data in class ¢ and
the remaining classes for j = {1,2,...,k}\{i}. This scheme assigns the class
label for a new instance z based on the largest value of f;(x). However, using
the one-vs.-rest approach for the largest value strategy is debatable. That is,
dependently comparing k output values among fi, fo, ..., fi that are trained
independently might not be reasonable. Since each classifier is trained by
an unbalanced binary classification problem, it tends to produce a nega-
tive output for all classifiers. Conversely, the one-vs.-one scheme constructs
k(k — 1)/2 binary subclassifiers. This approach trains each subclassifier f;;
from data in class ¢ and class j, where i,j € {1,2,...,k} and i < j. If f;;
says x is in class 4, it increases the vote for class ¢ by one; if not, it increases
the vote for class j by one. After x goes through all k(k — 1) /2 subclassifiers,
the one-vs.-one scheme applies the majority vote strategy [15] for labeling x
to the class with the most votes. If a given x with a known label is irrele-
vant to two particular classes under a present f;;, the f;; still must make a
binary decision, voting on an unrelated class due to the mechanism of the
one-vs.-one scheme. This type of vote is a nuisance vote. The one-vs.-one
scheme generates many of nuisance votes in binary voting games. Numerous
nuisance votes pollute the clarity of the one-vs.-one scheme in classifying x
into a correct class, decreasing prediction accuracy and confidence.



To address the above concerns of one-vs.-rest and one-vs.-one, this study
introduces a multi-class smooth support vector machine (MSSVM) formu-
lation. The proposed approach extends previous work in smooth support
vector machine (SSVM) [25] from binary to k-class classification using the
single machine approach [9, 10]. Training an MSSVM involves solving a huge
and complicated unconstrained minimization problem, especially when k is
large. In many cases, this prohibits the practical application of MSSVM.
This study implements MSSVM for a ternary classification problem , calling
it TSSVM. For the case k > 3, we propose a novel scheme, one-vs.-one-vs.-
rest (OOR). This scheme decomposes the problem into k(k — 1)/2 ternary
classification subproblems based on the assumption of ternary voting games
[14]. This makes it possible to solve the k-class classification problem via
a series of TSSVMs. The OOR scheme is able to filter out lots of nuisance
votes, increasing both prediction accuracy and confidence. The experiments
in this study, we compare accuracy rates for TSSVM/OOR, one-vs.-one, one-
vs.-rest, and the popular LIBSVM (one-vs.-one) [6] on nine UCI datasets.
This paper uses 2-norm soft margins to measure the training errors in other
schemes. For completeness and comparison purposes, this study lists the nu-
merical results of LIBSVM which implements the 1-norm soft margin SVM
and is different from our 2-norm soft margin SSVM, as the base classifier.
The numerical results show that TSSVM/OOR outperforms the one-vs.-one
and one-vs.-rest for all the datasets, and it is comparable to LIBSVM as
well. Detailed error analysis shows that the prediction confidence of OOR is
higher than the one-vs.-one scheme.

In many pattern recognition applications, it is necessary to provide the
detection ability to identify hidden classes that do not appear in the collection
of training data [35]. Due to the nature of OOR design, it can detect the
hidden (unknown) class directly. To demonstrate the detection ability of
the proposed OOR method for hidden classes, this study includes a “leave-
one-class-out” experiment on the pendigits dataset. The results show that
OOR significantly outperforms the one-vs.-one and one-vs.-rest schemes in
the hidden class detection rate, and achieves slightly better testing accuracy.

The following briefly describes some notations used in this paper. A
training dataset is {(x%,y;)}",, where ' € R™*! is the sth training instance
and y; € {1,2,...,k} is the class label of z'. For notational convenience,
the training dataset is rearranged as an m x n matrix A, and A; = (z')’
corresponds to the ith row of A. The notation of (x,w) denotes the inner
product of x and w, where both  and w belong to R™*!. Column vectors of



ones and zeros are denoted by bold 1 and 0 respectively.

The rest of this paper is organized as follows. Section 2 provides a brief
introduction of SSVM and reduced kernel trick in SVM. Section 3 describes
the formulation of MSSVM and the implementation of TSSVM and OOR.
Section 4 presents the comparison results of classification accuracy, confi-
dence, purification ability and detection ability for hidden classes. Section 5
concludes the paper.

2. Smooth Support Vector Machine for Binary Classification

In the last decade, researchers have proposed many different formula-
tions of SVMs. However, all of these variants solve either a constrained
minimization problem or an unconstrained minimization problem. The ob-
jective function in such optimization problems consists of two main parts:
a miss-classification penalty part that stands for model bias, and a regular-
ization part that controls the model variance. As the bases of MSSVM, we
briefly introduce the smooth support vector machine [25], the kernel trick to
extend the linear SVM to the nonlinear one, and reduced kernel technique.
The reduced kernel technique overcomes the computational difficulties that

occur in dealing with a fully dense square kernel matrix in the conventional
nonlinear SVM.

2.1. Smooth Support Vector Machine

The aim of a SVM is to identify the separating hyperplane with the largest
margin in the training data. This allows the SVM classifiers to have a better
generalization ability in predicting the label for a new unseen instance. This
hyperplane is “optimal” in the sense of statistical learning [33].

Begin with linear SVM for the binary classification. Given a training
dataset S = {(z',91),..., (™, ym)} C R" X R, where z' € R" is the input
data and y; € {—1,1} is the corresponding class label. Solving a convex
optimization problem generates a conventional SVM separating hyperplane
as follows:

. moeo 41 2
(wvbvé-;-[el]l%]:}l+l+m C Zlil 52 + D) ||w”2
subject to (', w) +5) + & > 1 1)

& >0, fore=1,2...,m,
where C'is a positive parameter controlling the trade-off between the training
error (model bias) and the part of maximizing the margin (model variance)
that is achieved by minimizing ||w|3. Unlike the conventional SVM in (1),
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the smooth support vector machine minimizes the square of the slack vector
¢ with weight % The SSVM-methodology appends % to the term being
minimized. This expansion leads to the following mlmmlzatlon problem:

(wbﬁg}%{lz+1+m % 2111 £Z2 + %<Hw|’% T 52)

subject to y;((z',w) +b) +& > 1 (2)
§& >0, fori=1,2,....,m

In the solution of (2), £ is given by & = {1 — y;({(z*,w) +b)}, for all i where
the plus function x, is defined as z, = max{0,z}. Thus, we can replace
& in (2) by {1 — y;({z',w) + b)},. This converts the problem (2) into the
following unconstrained minimization problem:

min Z{l—yz @', w) +b)} + (IIWI!§+62)' (3)

(w,b)eRP+1 2

This formulation reduces the number of variables from n 4+ 1 + m to n +
1. However, because the objective function to be minimized is not twice
differentiable, it precludes the use of a fast Newton method. In the SSVM,
the plus function z, is approximated by a smooth p-function, p(z,a) =
T+ ilog(l + e ), > 0. Replacing the plus function with an accurate
smooth approximation allows the p-function to give the following smooth
support vector machine formulation:

. mlngp{l—yz o w) 40 e + (w8, @)

where a > 0 is the smooth parameter. The objective function in problem
(4) is strongly convex and infinitely differentiable. Hence, it has a unique
solution and can be solved using a fast Newton-Armijo algorithm. For the
nonlinear case, Mercer kernel mapping can construct a linear classifier in the
feature space. This formulation can be extended to the nonlinear SVM as
using a generalized support vector machine (GSVM) [27]:

min —Zp 1—%{2% o)+ 0o + (B ), )

(v,b) cRrm+1 2

where K(z',27) is a kernel function. This kernel function represents the
inner product of ¢(z°) and ¢(z7), where ¢ is a certain nonlinear mapping
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from input space R" to a feature space F. We do not need to know the
mapping of ¢ explicitly. This is the so-called kernel trick. The most popular
kernel is called Gaussian Kernel (Radial Basis Function), defined as

The nonlinear SSVM classifier f(z) can be expressed as follows:

f(z) = Z v; K (27, 1) + b. (7)
v; 70
This classifier is a linear combination of basis functions {1} | J{K (27, )};n:1
The coefficient v; is determined by solving an optimization problem (5) and
the data points with corresponding nonzero coefficients are called support
vectors. It is often desirable to have fewer support vectors.

2.2. Reduced Support Vector Machine

In large scale problems, the fully dense kernel matrix creates space and
time complexity problems when dealing with (5). To avoid these difficul-
ties and reduce model complexity, this study introduces the reduced kernel
technique [24]. This technique reduces the big full kernel matrix without
sacrificing its generalization ability. The key idea of the reduced kernel tech-
nique is to randomly select a small portion of data as the kernel bases and
then generate a thin rectangular kernel matrix to replace the original square
full kernel matrix. Based on the low-rank Nystrém approximation [32, 36],
the full kernel matrix can be approximated as:

K(AA) =~ K(A A)K(A,A) K (A A), (8)
where K (A, A') = Kpxm > Amxn is a subset of A and K (A, A’) = Ky is a
reduced kernel. Thus, we have

K(A A~ KA AYK(AA)TK(A, Ajv = K(A, A, (9)

where v € R™ is an approximated solution of v via the reduced kernel tech-
nique. The reduced kernel method constructs a compressed model and re-
duces the computational cost from O(m?) to O(m?). The solution with
reduced kernel matrix approximates the solution with the full kernel matrix
and the performance with experiments in [24, 26].



3. The Framework for Multi-class Classification via TSSVM

Following the derivation of SSVM and RSVM, this study expands the
SSVM methodology from binary to k-class classification and give the formu-
lation of MSSVM. This section describes the implementation of TSSVM and
the framework of the OOR scheme in detail.

3.1. Multi-class Smooth Support Vector Machine

For the multi-class classification problems, this section expands the idea
of comparing k margin requirements under a single optimization problem [34]
and formulate the problem as follows:

k

min = wj2—|—b2-—|—gm 2
o AN IE ) S 5 T g "

2
subject to: {(x' w¥) + by, > (x',wI) +b; + 1 —&;
i=1,....,m, j €€ \y;, € =A{1,...,k}.

Similar to the derivation of SSVM in Section 2.1, we can obtain an un-
constrained minimization formulation for the linear MSSVM:

o

min : 4 (lw]3 4 0%)+

(w,b)€ Rk (n+1) j
S 2 p([l = (@ w¥ —wl) = (by, — )], ).
1j#y;

(11)

ERD
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Because the objective function in problem (11) is twice differentiable, the
Newton-Armijo algorithm can be applied here again, and the unique solution
of (11) approaches the unique solution of the equivalent optimization problem
(10) when the smoothing parameter a approaches infinity. The proof can also
be adapted from the results in binary SSVM [25]. Moreover, because linear
MSSVM only needs to find k(n+1) variables in problem (11), and the number
of variables is much smaller than other single machine approaches.

Applying the kernel trick as in Section 2.1, it is easy to modify the linear
MSSVM (11) to obtain a nonlinear multi-class smooth SVM:

k
min 1 V|2 4+ b))+
R Do BN »



This optimization problem (12) can generate a highly nonlinear separating
surface while retaining the strong convexity and differentiability properties
for any arbitrary kernel. The Newton-Armijo algorithm is also applicable to
this problem.

Equation (12) must find k(m + 1) variables, and its computational com-
plexity is O((k(m + 1))3). Like other single machine approaches, nonlinear
MSSVM becomes impractical when confronting large-scale data problems
with either a large m or k. To overcome these computational difficulties, the
proposed approach alleviates the difficulty of a large m. This study uses the
same idea of RSVM in Section 2.2 to replace the full kernel K (A, z) in the
problem (12) with a reduced kernel K (A, z), where A € R™*" is a random
subset of A and m < m. This produces a nonlinear MSSVM with reduced
kernel as follows:

' 3 07|13 + b3)+
. 2j:1(HU 13+ 7) )
7 2 ; p([1 = (K (A, 2%), 0% — 07) — (by, — b;)], ).
1=1J7Yi

For the optimization problem (13), we only need to find k(m + 1) variables.
Thus, this approach efficiently mitigates computational cost and memory
usage without sacrificing prediction accuracy.

3.2. Ternary Smooth Support Vector Machine (TSSVM)

Although MSSVM has been developed for any (k > 3)-class classification
problems, it is still too complicated to implement when k£ is large. We only
implement the ternary smooth support vector machine (TSSVM) and use
it as the base classifier of our framework for multi-class classification. For
k > 3, this study proposes the OOR scheme introduced in Section 3.3. This
section shows the implementation of TSSVM. Based on the optimization
problem (11), the TSSVM formulation is as follows:

ity B~ SO Bl
where w and B are
w! Al j L E— o' 0!
b, A12 112 O; 0; —A; —121
p) _ _
W = w ) B = AQ 12 AQ 12 02 02
ba O 0 A 12 —A% —1
w3 —A3 —-13  O? 03 A3 13
bs 1 3mi1yx1 o* 0 -A* —1° A4 1 2mx3(n+1)



where O7 is a m; X n zero matrix, and both 1/ and 07 are m; x 1 vectors for
j=1,2,3.

Nonlinear cases simply require changing the training inputs from A to
K (A, A’) before constructing the matrix B.

When using the Newton-Armijo algorithm to solve the optimization prob-
lem (14), the most important ingredients are the gradient and the Hessian
matrix of ®,(w). Apply the chain rule from calculus and some elementary
matrix algebra to get the following formulae:

lim V&, (w) = [w— CB'(1 — Bw),] (15)
and
lim V2®,(w) = [I + CB'diag(S«(1 — Bw))B], (16)
where 1 1 gn(z)
. + sign(x
=1 = . 1
SOO(']:) a1—>nolo 1 + e—az 2 ( 7)

In fact, the limit of the gradient of ®,(w) as a goes to infinity (15) is the
gradient of (11), and the limit of the Hessian matrix of ®,(w) as a approaches
infinity (16) is an element of the generalized Jacobian of (11) [7]. Although
the Newton-Armijo algorithm is globally convergent with any initial solution,
a wise choice of the initial solution can significantly reduce the computation
time. To speed up the convergence, use the solution of one-vs.-rest as the
initial setting of w® in the Newton-Armijo algorithm.

3.3. One-vs.-One-vs.-Rest Strategy

To deal with the case for k& > 3 in k-class classification problem and
filter out the nuisance votes occurring in the one-vs.-one scheme, this sec-
tion proposes a one-vs.-one-vs.-rest (OOR) scheme that decomposes a k-class
classification problem into k(k — 1)/2 subproblems. Each subproblem is a
ternary classification problem that consists of two particular classes and the
rest of the classes fused as the third class from the training set. The TSSVM
classifier developed in the previous section can serve as a tool to generate
the k(k — 1)/2 ternary classifiers. For a new instance x, each subclassifier
has three options to vote for: each of the two particular classes and the
rest-class, respectively. After x goes through all subclassifiers of OOR, like
one-vs.-one, OOR determines the class label of x using the majority voting
strategy except for the rest-class.



The OOR scheme can reasonably assign the class label based on the as-
sumption of ternary voting games [14]. If a given x has no relation with two
particular classes under a present subclassifier, the subclassifier can abstain
in this round of ternary voting games by voting for the rest-class. The one-
vs.-one scheme does not have the merit of this option. Thus, the one-vs.-one
scheme suffers from the restriction of binary subclassifiers, and each subclas-
sifier can only make the decision about one pair of binary choices at a time.
This approach inevitably generates many nuisance votes. A plethora of nui-
sance votes pollutes the final decision of the majority strategy, decreasing
prediction accuracy and confidence. An interesting phenomenon that hap-
pens to the prediction results of one-vs.-one is that the number of votes in
the champion class is always close to the runner-up, whereas OOR is able to
filter out the majority of nuisance votes, clear up the tense and unstable cir-
cumstance, and simultaneously increase prediction accuracy and confidence.
Sections 4.1 to 4.3 present these numerical results. Furthermore, the OOR
design has an excellent ability to detect the hidden classes that do not ap-
pear in the existing classes of the training data. The demonstration of the
detection ability of OOR for hidden classes will be shown in Section 4.4 as
well.

To visualize the effectiveness of the OOR scheme in generating a highly
nonlinear separating surface, this study tests two synthetic nine-block datasets,
which are quaternary classification problems. Each block includes 150 train-
ing points without and with noises on the boundaries, and the distinct color
means the different category. To compare the performance of OOR, one-
vs.-one, and one-vs.-rest, we uniformly generate 40000 testing points in the
nine-block box and apply the Gaussian kernel (6) to all of the classification
methods. Figure 1 and Figure 2 show the training sets and testing results.
These results clearly show that OOR generates a highly nonlinear separat-
ing surface, and its accuracy rates are higher than the other methods. The
following section tests TSSVM/OOR on some real datasets from UCIL

4. Experimental Results

This study presents experimental results in four parts. Section 4.1 tests
TSSVM/OOR, one-vs.-one, one-vs.-rest, and LIBSVM [6] on nine UCI datasets
to determine their accuracy. LIBSVM is a popular SVM solver, implemented
as l-norm soft margin SVM. This paper uses a 2-norm soft margin SSVM
as the underlying classifier. To compare the performance between the two
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Figure 1: Nine-block dataset without boundary noises. The accuracy rates are also listed
in the parentheses.

different forms of SVM classifier, we present all numerical results for com-
pleteness and comparison purpose. Through detailed voting analyses, Sec-
tion 4.2 shows that OOR is a powerful scheme that can precisely filter out
most nuisance votes. Section 4.3 presents further detailed error analysis,
showing that OOR achieves higher prediction confidence than one-vs.-one.
Section 4.4 demonstrates the detection ability of OOR for hidden classes. All
the codes in this study were written in Matlab [28] and all the experiments
were executed in the same environment. The computational configuration
was a P4 2.0GHz computer with 1GB of memory and Windows XP operating
system.

4.1. Numerical Results on UCI Datasets

TSSVM was first tested on four ternary classification problems, including
iris, tae, wine, and dna, to prove its usability. OOR was tested on glass,
segment, image, satimage, and pendigits. These nine datasets are public
and available either on UCI repository machine learning database [2] or UCI
statlog collection [29]. Table 1 lists the characterization of these datasets.

In implementation, all the training datasets were normalized to have mean
0 and variance 1. The same scaling was applied to the testing datasets
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Figure 2: Nine-block dataset with boundary noises. The accuracy rates are also listed in
the parentheses.

Table 1: Data characterization

datasets #training data | #testing data [ #classes | #attributes
iris 150 0 3 4
tae 151 0 3 5
wine 178 0 3 13
dna 2000 1186 3 180
glass 214 0 6 9
segment 2310 0 7 18
image 210 2100 7 19
satimage 4435 2000 6 36
pendigits 7494 3498 10 16

according to the scale of the training datasets. For datasets without a test
set, 10-fold cross validation (CV) was used to evaluate their performance. For
detailed description, we used two nested CV loops; the outer loop estimated
the generalization error while the inner CV tuned the parameters. This
approach ensures that the validation set in outer loop is independent of model
selection. The Gaussian kernel (6) was applied to all multi-class SVMs during
both training and testing. The subclassifiers of a multiple-machine approach
share a common pair of learning parameters of (C,~). Note that SSVM is
applied to construct one-vs.-one and one-vs.-rest schemes, and TSSVM is
employed for the OOR scheme. To reduce computational cost, we apply the
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reduced kernel technique to TSSVM/OOR and one-vs.-rest when training
from dna, segment, satimage, and pendigits. To find a desirable pair
of (C,7), a model selection method called nested uniform designs (nested-
UDs) [18] is utilized. It only tries on 21 different pairs of (C,~), which
is wisely chosen by number-theoretic methods [13]. The results by using
nested-UDs are usually good enough with much less computational cost as
compared to the grid-search model selection method. Table 2 reports the
best learning parameters for each multi-class SVM on each data problem.
Based on the accuracy results listed in Table 3, the TSSVM/OOR approach
performs better than one-vs.-one and one-vs.-rest for all datasets, and is
mostly superior to LIBSVM as well.

Table 2: Learning parameters of (C,~)

datasets TSSVM/OOR | one-vs.-one one-vs.-rest LIBSVM

iris (3.16E+3, 1.07E-2) | (3.16E+3, L.OTE-2) | (4.22E+4, 4.17E-3) | (7.50E-1, 3.41E-1)
tae (1.33E+4, 5.25E-1) | (1.33E+4, 5.25E-1) | (1.33E+4, 5.25E-1) | (2.37E+3, 2.04E-1)
wine (1.33E+1, 1.35E-3) | (4.22E-1, 2.20E-2) | (3.16E+3, 1.85E-3) | (1.00E+0, 3.50E-2)
dna (2.37E+2, 2.53E-4) | (3.16E+3, 9.85E-5) | (3.16E+5, 3.47E-4) | (1.00E+4, 8.00E-2)
glass (4.64E+1, 1.25E-1) | (1.OOE+1, 5.53E-2) | (1.00E+4, 2.52E-2) | (3.16E+3, 4.50E-3)
Segment (1.00E+3, 3.82E-2) | (2.37E+2, 4.61E-2) | (3.16E+4, 6.11E-2) | (1.00E+6, 4.90E-3)
image (4.22E+4, 1.22E-3) | (2.37E+4, 1.10E-2) | (4.22E+4, 1.22E-3) | (1.00E+2, 2.00E-3)
satimage | (3.16E+1,893E-2) | (3.16E+1, 8.93E-2) | (3.16E+1, 8.93E-2) | (3.16E+0, 1.00E-1)
pendigits | (1.36E+1, 1.14E-1) | (2.37E+3, 1.56E-1) | (3.16E+1, 6.08E-2) | (3.16E40, 7.12E-2)

4.2. The Purification Ability of OOR

This subsection report the results of two voting analyses for the previous
prediction results of OOR and one-vs.-one on the image testing dataset.
Results show that OOR has a strong purification ability to filter out nuisance
votes.

In the first voting analysis, for each pair (actual class ¢;, predictive class
¢;), calculate the average vote value ¢ obtained from the subclassifiers that
classify the c;-class testing points into c;-class, where 7,5 = 1,2,...,k and
0 < (¢ <k—1. In Table 4, a value in cell (¢y, ¢4) belonging to the one-vs.-one
scheme is 4.95. This means that through the (k—1) ¢4-related subclassifiers of
one-vs.-one, the predictive class ¢4 gains 4.95 average votes among the testing
points, which actually belong to class ¢;. In other words, once the majority
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Table 3: Accuracy reports on nine UCI datasets

datasets TSSVM/OOR | one-vs.-one | one-vs.-rest LIBSVM
iris 98.00 97.33 97.33 96.33 (97.33)
tae 70.30 66.60 67.58 62.00

wine 99.44 98.23 98.33 08.33 (99.44
dna* 95.36 93.51 92.24 95.20 (95.45
glass 75.29 72.14 72.59 71.52 (71.50
segment™ 97.10 96.10 96.54 97.15 (97.40
image 92.05 90.48 90.86 90.62
satimage™ 91.55 90.75 91.05 91.28 (91.30)
pendigits™ 97.71 97.17 97.68 98.23

Notation * indicates the use of the reduced kernel technique on dna, segment,
satimage and pendigits, the corresponding reduced sets are randomly selected by
15%, 10%, 15% and 5% respectively. This technique is used only for TSSVM/OOR
and one-vs.-rest. All data problems are solved by one-vs.-one and LIBSVM with full-
kernel. The available results of LIBSVM with grid-search (15 x 15) in [17] are also
announced in parentheses. The bold number means the highest accuracy rate among
these multi-class SVMs.

strategy is applied, the second highest average value 4.95 easily leads the
one-vs.-one scheme to make wrong estimations. However, the corresponding
second high value reported from the OOR scheme in cell (¢g,¢y4) decreases
dramatically to 0.02. The OOR scheme not only keeps the average value 6.00
in an idea correct estimation from the cell (cq,c2) of one-vs.-one table, but
it also succeeds in removing those wrong estimations in (¢, ¢j—f1,..7\f23) to
(¢a, ¢), where ¢, means the rest-class embedded in each ternary subclassifier
of OOR. The average value of (¢;, ¢,) is lower than k(k —1)/2. Results show
that the OOR scheme is effective in nuisance-vote filtering and successful in
pacifying the tense voting results from the one-vs.-one scheme.

For the second voting analysis, we look into the voting behavior of OOR
and one-vs.-one for the testing points. Many testing points are misclassified
by the one-vs.-one scheme, but are predicted correctly by the OOR scheme.
Table 5 only reports results from partial testing points. We list these exam-
ples according to the original order from UCI. The function ¢;(x) records the
number of times that k(k — 1)/2 subclassifiers classify the data point = into
predictive class ¢;, where ¢j(z) < k—1 for j € {1,...,7} and the rest-class
¢ (x) < k(k—1)/2. Note that when predictive classes have the same number
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Table 4: Average voting analysis on image testing dataset

OIC-VS.—0TC
Actual Predictive class Sum of
class C1 C C3 Cy Cs Ce cr ¢, | per row
1 578 0385380456160 140 - 21
Co 1.00 | 6.00 | 3.00 [ 4.95 | 2.05 | 4.00 0 - 21
Cs 3531010 |5.77 357484180 1.38 - 21
Cy 251 115317579 |3.75 | 4141 0.49 - 21
Cs 377 01406422566 1.74 155 - 21
Co 250 05T 356498294 6.000.51 - 21
Cr 2.00 0143713381390 1.39]5.906 - 21
OOR
Actual Predictive class Sum of
class C Co C3 Cy4 Cs Cs Cr ¢, | per row
1 5.73 0 0104410.03 0 01479
Co 016.00 010.02 0 0 0] 14.08 21
C3 0.04 05291011 [1.22]0.01 0| 14.33 21
Cy 0030041015430 0.1710.30 0]16.01 21
Cs 0.05 070911070394 0.01 01 15.40 21
Ce 0 0]0.010.04]0.0176.00 0| 14.94 21
Cr 0 010.02 0 01006 5.95] 14.96 21

¢, means average sum of votes for the rest-class used only in the OOR scheme.
(The ideal cases in OOR's table are (¢;,¢;) = k—1 and (¢j,¢,) = k(k—1)/2—
(k—1))

of votes,  can be randomly assigned to one class among these classes. The
OOR scheme succeeds in avoiding the nuisance votes generated from one-vs.-
one, dramatically converting the wrong estimations into correct ones based
on the majority strategy.

Both the voting analyses above show that OOR has the strong purifica-
tion ability, which is the main reason why OOR can effectively increase the
prediction accuracy under the more reasonable voting scheme. The following
subsection uses detailed error analyses to show that not only the purifica-
tion ability of OOR can raise the prediction accuracy, but it can effectively
pacify the tense and unstable phenomenon of one-vs.-one to achieve more
confidential prediction results.

4.3. The Prediction Confidence of OOR

This subsection attempts to identify the confidence-level in which most
testing points are determined by one-vs.-one and OOR, and provide two kinds
of detailed error analyses to measure each confidence-level. The rank of a
confidence-level with two error analyses served as the criteria for evaluating
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Table 5: Voting behavior of OOR and one-vs.-one on image testing subset

Index | Class OOR one-vs.-one
ofx |label [¢; ¢ ¢3 e ¢35 ¢ ¢ ¢, | ¢ ¢ €3 €4 C5 Cg C7
1082 1 5 0 0 1 0 O 0O 1514 0 5 6 3 2 1
1084 1 4 0 0 3 0 0 0 1414 0 5 6 3 2 1
1089 1 5 0 0 4 0 0O 0 1214 0 5 5 4 2 1
1100 1 6 0 0 4 0 O 0 115 0 4 6 3 2 1
1112 1 5 0 0 1 0 O 0O 1514 0 6 4 4 2 1
1122 1 6 0 0 2 0 O 0 13|15 0 4 6 3 2 1
1131 1 6 0 0 I 0O O 0 1415 0 3 © 4 2 1
1152 1 5 0 0 2 0 0 0 1415 0 5 4 4 2 1
1153 1 6 0 0 2 0 O 0 135 0 4 6 3 2 1
420 3 0 0 6 0 4 0 0 113 0 5 5 5 2 1
422 3 0 0 b 2 0 0O O 14[3 0 5 6 4 2 1
428 3 0 0 6 0 4 0 0 I1[3 0 5 5 5 2 1
443 3 0 0 6 0 0O 0O o I5[2 1T 4 ®© 3 5 0
452 3 0 0 6 0 0 0O O 154 0 5 3 6 1 2
485 3 0 0 6 2 0 0O 0 I3[3 0 5 6 4 2 1
1249 3 0 05 0 0 0O 0 1I6[3 0 5 6 4 2 1
1255 3 0 0 6 0 5 0 0 10[3 0 5 5 5 2 1
1261 3 0 0 6 0 5 0 O 103 0O B 5 5 2 1
239 4 0 0 0O 0 0 0 162 1T 3 5 B 4 0
251 4 0 0 1 5 0 0O 0 153 0 6 4 5 2 1
266 4 0 0 0O 0 0O 0 1I6[2 1T 3 5 6 4 0
272 4 0 0 0O 0 0 0 164 1T 2 5 6 3 0
284 4 0 0O 0O 0 0O 0 16[4 0 5 4 5 2 1
290 4 0 0 0 6 0 0O O 152 1 3 5 6 4 O
299 4 0 0 05 5 0 0 I1I[3 0 5 4 6 2 1
311 4 0 0 0O 0 0 0 1I6[3 1T 2 5 6 4 0
321 4 0 0 0 6 4 0 0 113 1 3 5 6 3 O
954 5 0 0 0O 1T & 0 0 1474 0 3 6 5 2 1
970 5 0 0 0O 0O 2 0 0 19[5 0 3 5 5 2 1
981 5 0 0 0 0 6 0 O 15[ 0 4 4 5 2 1
1013 5 0 01 0 4 0 0 1I6[3 0 6 4 5 2 1
1397 5 0 0 0O 0O 2 0 0 19714 0 5 4 5 2 1
1731 5 0 0 0 3 4 0 0 14[]2 0 3 6 5 4 1
1734 5 0 0 1 0O 5 0 0 153 0 4 6 5 2 1
2076 5 0 0 0O 02 0 0 19[5 0 5 3 5 1 2
2084 5 0 05 0 5 0 0 1I1I[3 0 ®© 4 5 2 1

This table only reports a subset for those testing instances which are misclassified
by one-vs.-one but they are predicted correctly by OOR. ¢, means average sum of
votes for the rest-class used only in the OOR scheme. The bold number represents

the highest votes among 7 classes.
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prediction confidences of these two schemes. Take the previous prediction
results of OOR and one-vs.-one on the data problems of image, satimage,
and pendigits, which have provided the testing datasets with k£ > 3, as
examples. For a testing point x, we are concerned only with the highest
two values of Vi(z) and Va(x) among ci(x), co(z), ..., cx(z), and define the
confidence-level by n(z), where 0 < n(z) = Vi(z) — Va(z) < k—1. These two
detailed error analyses are called conditional confidence error rate (c.c.e.r.)
and conditional misclassified error rate (c.m.e.r.), defined as follows:

(C c.e.r ) _ Number of misclassified points in level n
A/ Number of points in level n
(18)
(C m.e.r ) _ Number of misclassified points in level n
A/ Number of total misclassified points

For the one-vs.-one scheme on the image testing dataset, Table 6 shows
that there are 1715 testing points and the 200 (#errs) misclassified points
voted under confidence-level 1. The c.c.er. is 7.11% and c.m.e.r. is 61%.
In other words, most testing points are determined by one-vs.-one under
the lower confidence-level 1 with high conditional error rates. On the other
hand, most testing points are not only determined by OOR under the highest
confidence-level 6, but the 2.72% c.c.e.r. and 25.75% c.m.e.r. (#errs=167)
results are comparatively smaller. the numerical results in Tables 7 and 8
show the same phenomenon on the prediction analyses of one-vs.-one and

OOR.

Table 6: Confidence-level error analyses on 2100 image testing points

Scheme [ n(x) 0 1 2 3 4 5 6
points 79 | 1715 306 0 0 0 0
errs 62 122 16 0 0 0 0

c.m.e.r. 31.00 | 61.00 | 8.00 - - - -
ﬁpomts 39 94 122 65 56 1441 1580

errs 21 32 26 18 10 17 43
OOR ccer. (%) |53.85|34.04 | 21.31 | 27.69 | 17.86 | 11.81 | 2.72
cm.er. (%) | 12,57 | 19.16 | 15.57 | 10.78 | 5.99 | 10.18 | 25.75

one-vs.-one | c.c.e.r. (%) 78.48 | 7.11| 5.23 - - - -
(%)

The bold number denotes that most testing points are determined under the confidence-level.
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Table 7: Confidence-level error analyses on 2000 satimage testing points

Scheme [ n(x) 0 1 2 3 4 5
points 37 1953 10 0 0 0
errs 8 171 6 0 0 0
one-vs.-one | C.C.e.r. (%) 21.62 | 8.76 | 60.00 - - -
cmer. (%) | 432[9243 | 3.24 - - -
ﬁpoints 15 35 49 24 32 | 1845
errs 6 16 16 5 15 111
OOR c.cer. (%) 40 | 45.71 | 32.65 | 20.83 | 46.83 | 6.02
cmer. (%) | 355| 9.47| 947 | 2.96| 8.88 | 65.7

The bold number denotes that most testing points are determined under the confidence-level.

Table 8: Confidence-level error analyses on 3498 pendigits testing points

Scheme [ n(x) 1 2 3 415 6 7] 8 9
points 7| 3188 | 303 0 0 0 0 0 0 0
errs 4 83 12 0 0 0 0 0 0 0
one-vs.-one | c.c.e.r. (%) 57.14 | 2.60 | 3.96 - - - - - - -
cm.er. (%) | 404 | 8384 | 12.12 - - - - - - -
F#points 4 26 29 13 10 4 7 13 20 | 3372
FFerrs 4 14 16 3 3 3 2 2 7 26
OOR c.ce.r. (%) 100 | 53.85 | 55.17 | 23.08 | 30 | 75 | 28.57 | 1538 | 35.00 | 0.77
cm.er. (%) | 500 1750 [ 2000 | 3.75 | 3.75 | 3.75 | 250 | 250 | 8.75 | 32.50

The bold number denotes that most testing points are determined under the confidence-level.

These experiments indicate that a multi-class classification task is usu-
ally done by one-vs.-one under confidence-level 1, which is a quite tense and
unstable situation because V,(x) can easily overcome V;(z), decreasing pre-
diction confidence. However, the OOR scheme without bothering nuisance
votes successfully pacifies the circumstance, achieve high confidence. Thus,
the accuracy rate reported from OOR will be more convincing even if these

two accuracy rates are the same.

4.4. The Detection Ability of OOR for Hidden Classes

To demonstrate the detection ability of the proposed OOR method for
hidden classes, this study includes a “leave-one-class-out” experiment on the
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pendigits dataset. In this case, the training phase uses 9 classes of data
points, while the testing phase involves 10 classes. In our hidden-class detec-
tion criterion, an instance is a hidden class if all given classes gain fewer than
8 votes. The detection results of OOR will be compared with the results of
one-vs.-one and one-vs.-rest strategies. We report the testing accuracy as
well as the detection rate for hidden class for all strategies. For one-vs.-one,
the detection criterion is the same with OOR. The one-vs.-rest scheme uses
the criterion that all output values of the decision functions are negative.
The results show that OOR significantly outperforms the one-vs.-one and
one-vs.-rest schemes in the hidden class detection rate. In the testing accu-
racy, OOR is slightly better than others because the hidden class instances
represent only a small portion in the entire testing set.

Table 9: The detection results for hidden classes on pendigits dataset

Pendigits Overall Accuracy Rate (%) Hidden-Class Detection Rate (%)

Scheme OOR | one-vs.-one | one-vs.-rest | OOR | one-vs.-one [ one-vs.-rest
Hidden (c) | 89.88 87.51 86.88 | 62.81 12.95 5.51
Hidden (¢;) | 90.62 87.99 88.82 | 53.30 16.48 26.10
Hidden (c2) | 89.34 86.45 88.22 | 54.40 2.75 20.33
Hidden (c3) | 92.42 88.42 91.40 | 75.00 14.88 46.73
Hidden (cy) | 94.11 89.71 94.20 | 98.35 21.15 74.18
Hidden (c5) | 89.54 88.65 88.62 | 45.07 18.81 18.51
Hidden (cs) | 94.54 89.91 00.39 | 96.43 25.60 36.01
Hidden (¢;) | 95.17 88.71 04.68 | 89.29 18.41 67.58
Hidden (cs) | 92.71 88.59 01.71 | 69.94 25.30 50.30
Hidden (¢9) | 90.82 89.28 88.65 | 55.65 21.13 17.56

The bold number means the highest accuracy rate among these methods.

5. Conclusions

This study proposes a smooth support vector machine for multi-class
classification problems based on the single machine approach. The proposed
MSSVM is an unconstrained smooth and convex minimization problem. Due
to these features, MSSVM can be solved by a Newton-Armijo algorithm,
which is globally convergent with quadratic time. This study implements
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MSSVM for ternary classification problems, labeling it as TSSVM. For the
case of a class number greater than three, the proposed one-vs.-one-vs.-rest
(OOR) scheme decomposes the problem into a series of ternary classification
problems. The key difference between this OOR scheme and the one-vs.-one
scheme is that the OOR scheme allows us to classify a new unseen label in-
stance to the rest class. Thus, the OOR scheme can filter out many nuisance
votes, offering a more reasonable way to solve multi-class classification prob-
lems. The numerical results and detailed error analysis in this study show
that the proposed method achieves higher classification confidence. The pro-
posed OOR scheme also has the ability to detect hidden-class instances in
solving multi-class classification problems.
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